Intro to VEX IQ Robotics 5-6 Syllabus

Course Goals

1 VEX Robotics Platform

Students work extensively with the equipment and programming environment designed by the VEX Robotics organization.

2 Understanding Robotics Students use the VEX platform to explore topics of interest to modern robotics.

3 Robotics Engineering

Students synthesize what they have learned about the planning, building, and testing processes to solve practical problems.

Course Topics

1 Simple Machines Students learn how to use pendulums, pulleys, levers, and gears in robot design.

2 Mechanics of Robots

Students learn how turning scrub and manipulating objects affect robot design.

3 Movement in Graphical VEX

Students program autonomous movement patterns using the graphical interface of VEX.

4 Sensors in Graphical VEX

Students implement all the sensors available in the VEX kits to enhance their programs.

5 Revising Designs

Students practice testing and revising their designs for a bigger challenge.

6 Working Around Limits

Students practice completing challenges when restricted in materials, time, and resources.

Course Schedule

Day 1 Introduction Students are introduced to the instructor and each other, and they learn about the rules for class.

Assessment of Robotics Knowledge

Students are assessed on prior robotics knowledge in order to give the instructor a better understanding of where the class is as a whole, and how to best teach according to the students' strong suits.

Pendulum Introduction

Students are introduced to the pendulum as a mechanism in robotics and machines.

Pulley Introduction

Students learn about the pulley and how useful it is in designing robots.

Lever Introduction

Students look into how simple lever mechanics are used in robotics and why it is crucial to design.

Gears Introduction

Students understand how gears interact together and the math behind planning gear layouts.

Day 2

Gears Introduction

Students understand how gears interact together and the math behind planning gear layouts.

Drivetrain and Manipulation

Students work on drivetrains and how they affect performance, and how objects can be manipulated using the kits.

Standard Drive Base

Students work with a standard build of a robot to figure out basic robot movement and remote control interaction.

Day 3

Standard Drive Base

Students work with a standard build of a robot to figure out basic robot movement and remote control interaction.

Object Manipulator with Drive Base

Students take the standard drive base robot and apply object manipulation to further their understanding of how robots interact with real world objects.

Lifting Mechanism

Students use the standard drive base and pair it with a lifting attachment to explore how object manipulation can be taken further in real world applications.

Day 4

Lifting Mechanism

Students use the standard drive base and pair it with a lifting attachment to explore how object manipulation can be taken further in real world applications.

Autopilot

Students explore the autopilot capabilities of robots using sensors and the robot's software to see how remote controls are not the only way to use robots.

Day 5

Distance Sensor

Students tackle an in-depth "collision avoiding" function for the robots using motors and the distance sensors.

Color Sensor

Students complete a "green light, red light" function using the color sensor.

Day 6

Gyro Sensor

Students create a "return home" function with the gyro sensor and some programming.

Clawbot

Students build and program the Clawbot IQ and are challenged with prototyping.

Day 7

Clawbot

Students build and program the Clawbot IQ and are challenged with prototyping.

Clawbot and Sensors

Students use sensors with the Clawbot to do smaller challenges with the field.

Day 8

Clawbot and Autonomous Tasks

Students select appropriate sensors to the Clawbot to complete one or more tasks autonomously.

Day 9

Robot Soccer

Students apply all their learned knowledge in a friendly competition among the groups in two soccer challenges.

Day 10

Reviewing VEX

Students collectively discuss concepts, news, and future plans with regards to robotics.

Exploration

Students have a chance to plan and build for the current year's VEX challenge.

©2018 Fairfax Collegiate School, LLC. All rights reserved.

Updated on 3/13/2018